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Abstract. Characterratton and meaSuremer,t of fluctuations in quantum and classical 
populations are compared Asimple method for estrmalmg the population Rnctuation time 
IS outlined and approximate quantum and C / ~ S S L E O ~  expressions fer the two-time conelation 
iunctiaii are derived The utiliry af the metho0 t i  demanstiated through analysis of t te  
Scully-Lamb laser model, where it 1s rhoirn to give  orr re lam^^ timer in good agreement 
with numerical calcnlaiions for lasen opemtcd below, at, and above threshold Discrepan- 
o i l  tn the predictions ofaprevious s~milarmethodareshowntoonginatefrominwnsistent 
separation of it6 quantum and ciarrical versions 

2. htroductiont 

Models for the photon statistics of optical sources, whether postc!ated on a heuristic 
basis or derived rigorously from fundamental theory, are often couched in the language 
of population statistics. Indeed, in the absence of field following detectors at optical 
and higher frequencies !rf the electromagnetic spectrum. it could be argued that discrete 
stoLhastic processes provide the natural theoretical framework for the Cescriptlsn of 
phenomena which can ultimately be probed only bj the detection of photoelectric 
eveilts. There is, of course, a very large body of literature devoted to the analysis df 

classical population models. These have most commonly bee,] exploited IU ihe hiomedi- 
2x1 field and in the environmental sciences. However, such models are also used in 
sreas of physics and chemistry In pzrticular, in qu3mum optics. it is worth roting 
that the early laser mode: of Shimoda er al (1957) was essentially based on the weil 
known hinh-de~th-immigr~tion process of ciassical popuiation StSistics. 

Kc-L~~tc~p~euu& a CIdb>lti'il pupulartorl IIIUUCI xrr tRL- GVIILCXL "1 a yunrrtuur Ill~Lllal'lc'al 

problem is nor wirhout pitfalls. In particular the process of measuring cr monitoring~ 
the population must be handled with care if the formalism assoua?ed whh thz quantiza- 
tion of the Maxwell field is not invoked. This approach bas led in the past to some 
discrepancies appsaring in il simple hut potentially usefu. method for estimating the 
timescale of fluctuations generated by quantum population models (Jakeman and Pike 
1971). The purpose of this paper is TO clarify the ongin of these discrepancies and to 
Jemonstrate the utdity of rhe method thyough further consideration of the Scully-Lamb 
laser model, which provides a baseline for niore recent work on nonlinear optic2l 
systems. 

The fdlowing two sections discuss the Jionitoiing of flnctuations in quantum axd 
classical populations respectively. In saction 4 analysis oftke Sculiy-Lamb laser model 
shows that !he consisrent adoption oi quantum or clas:icnl monitoring schemes leads 
to identical estimates for the popuiation fluctuation time. A summary and conclusions 
are presented in section 5.  

n. : _.--.-. *:_. - -I... :-., ,.&:... -..I., .- .L. I _ P ^  &.__ ..-"'"..:-", 
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2. Quantum population correlztions 

Consider a population of quantum boson particles that shows statistical fluctuations 
in the number of individuals. If the fluctuations are caused by stationary processes, 
the correlanon between the numbers of individuals at times separated by a period T 

may he denoted 

E Jokeman and R Loudon 

GL2'(r) = ( a ^ ' ( O ) a * ' ( ~ ) n * ( ~ ) s ( O ) )  (2.1) 

where the ordering of creation and destmction operators at times 0 and T is appropriate 
to a measurement that is accomplished by a joint absorption of particles at the two 
instants of time (Glauber 1963). If P,(O) is the equilihnum statistical distribution of 
the particles amongst the number states In) and there IS no dynamical coupling of 
these diagonal elements of :he density matrix to off-diagonal elements, the correlation 
(2.1j can be written 

G ~ ' ( ~ ) = z ( n - l I a ^ ~ [ T ) n * [ T ) ~ f l  - I)?lP,,(o) ( 2  2) 

where the usual properties of the boson operators have been used. Let P(m,  r / n  - 1,O) 
he the conditional probability that there are m particles at time T given that there were 
n - 1 particles at time 0 The correlation (2.2) thus becomes 

Gh2'(r) = L mP(m, T /  n - 1, O)nP,,(O). (2.3) 
"n, 

Tile correlation for 7 = 0 takes the simple form 

G~ ' (o )  = z ( 1 1  - I)~P,(o) = (n (  n -1)). (2.4) 

G;h"(a) = (n)' (2 5 )  

The corrdation for very long times t also takes a simple form 

when the statistical fluctuations of the populaiion have finire correiarion times. If only 
a single correlation time is imponant, the results (2.4) and (2.5) for the two ends of 
the range of T can be interpolated by the form 

(2 .6)  
The inverse correlation ume A, is detennined by comparison of the time derivatives 
of (2.3j and (2.6). 

G y ' ( s \  = (n) '+{(n(n - 1)) -(n)'} exp(-J.,/r)) 

and explicit expressions for A, can he found for processes with known time derivatives 
ofthe conditional probability elements. Such expressions are of course exact for systems 
that have a single exponential decay process, but useful approximations can also be 
found for systems with morc complicated dynamics, and this is illustrated by the laser 
photon population correlation treated in section 4. A relation equivalent to (2 7) has 
previously been given by Hildred and Hall (1978) following Jakeman and Pike (1991). 

Consider now an experirr.ent in which particles are detected by removal from the 
population at an individual rate y.  For the example of a population of photons inside 
a single-ended optical cavity with a detector placed outside the caviry, y is the photon 
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transmission rate through the cavity mirror. The flow of particles into the detector can 
be described in terms of destruction operators 

b^(t)= y"2d(t)-d,"(t )  (2.8) 
where d,Jr) is associated with the Bow of particles hack into the population (Collett 
and Gardiner 1984). Such a reverse flow is here assumed to be absent, with the excitation 
described by & ( t )  taken to be in its vacuum state The spectrum of the population 
8xtuations i. defined to be (sec fcr example Eaake p: a! ! 9 S )  

Then use of the commutation property 

[b^(o), b*'(-)]= 8(T) 

together with the definition (2.1). gives 

Insertion of the form of correlation frcm (2.6) gives the spectrum 

where the first term on the right represents the detection shot noise 

3. Classical ~Q~~~~~~~~ eoaselatiaos 

It is interesting to compare the above analysis with that for a classical popuiation of 
individuals. This will also help to resolve certain discreljancies between results in the 
literature oil the subject (see section 41 An investigation ;F +he relationship between 
measurements on classical and quantum populations has heen carried out previously 
by Shepherd (1981 j, Jakeman and Shepherd (1984). The techniques deveioped in these 
papers have subsequently been applied to quantum mechanical problems (Shepherd 
and Jakeman 1987) and in the development of new classical population models 
(Jakeman 1990). 

The correlations hetween numbers of individuals at times separated by 2 period T 
in a classical population is given by 

G?'(T) =zX mP(m,  T I P I ,  O)nP,(O) 

p ( m ,  7; 72,o) = P(m,  Tin, o)p,,(O) 

(3 1) 
" " 3  

where 

(3 2) 

expresses the usual relationships between the equilibrium, conditional and joint distri- 
bulions of finding n individuals present in a classical population at time zero and m 
at time T. 

Equation (3 1 )  difiers from the quantum mechanical expression (2.3) only through 
the zppearance a< n in the cntlditinnal d:stribztion on ihe right-hanrl side rather t!ian 
(II - 1). In fact ecjYIQriOfl (2.3) is oblained for Q classical pop16lahon iyhen counted 
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indroiduals a,-e remoued so !hat the evdufion of theprocess isperturbed bv the measurement, 
cr equwaleatly when the papulation is monitored through measusemenl of the number of 
individuals leaving thepopuiation in a smallfixed time inferual (Jakeman and Shepherd 
1984). It is woch noting here that photon counting experiments measure such a flux 
of events, i.e. the number of particles arriving dt the detector In some saiaple time T. 
Only when this time is short compared with the fluctuation time of the light u.111 the 
number correiatior. function (2 3) coincide with the experimentally measured quantity. 
The effect of finite integration t i a e  on measuremepts of the Aux of individmls leaving 
a popuiation has been reported by S'ie$erd ji%i j and S'nevherd and Eakeman I lyli 1. 
This problem will not be considered further in the present paper. 

E Jakeman and R Loudon 

Equation (3 1)  implies that 

G:"(O)=(n') (3 3) 

and 
1 1  h i  ,d --I ,?1ZIimi - 4 - c  

u c  I-,-\", 

so that if on!y a single correlation time is important, the correlation iunctzon ofc1ass:;al 
number Euctuations can be interpolated hy the relation 

GL"(7) = (a}'+ [ (n') -(TI)'] exp(-he/ 71). (3.5) 
The characteristic rime constant is giv':n in terms cf the zero delay derivative of this 
quantity through the formula 

which may be compared with equation (2.7) for a quantum popuIation. Substituting 
(3.1) into equation (3.6) leads to the following expression for the time constant 

Spectral characterization of classical population processes does not feature promt- 
nently in the literature. However, the spectral density of a stationary point process is 
given by (COX and Lewis 1966) 

s(0) = I - < m ) + &  1 d r  eX?( ioT)! (m(! )m!r+T)?- (m)2~  (.3.8) 

where m ( r )  is the rate of change of the number of events counted in a short time 
interval centred at time ! The form of (3 8) results from the addition of a term ( m ) S ( T )  
to the covariance density of the dieerential process, m(r), in order that the correct 
result be obtained at zero delay time Note that the structure of the equation is Identicd 
to thatof (2.11) witb(m)= y(n)and(m(O)m(~))= y'6"'(~),andconfirmstheinterpre- 

characteristic fluctuation time of the event train 

m 1 
2% Z?T J-, 

*"tirr" - 6 1 ,  I, ~~" * .,-- ~ ^_.._ "-"-* .,",.A c- - :  _.^^_ ".:-..L ..-- -LA- > .^ .L. 
c , x L G ~ ' a b ' u ' ,  l l i l l i l 3 1 1 " i l  G " r u p , m s u  L" LIIL- ...U".. Y .  ,A.>, -0 U &.U* ' . i ~ . % l Y l r l l l b l l l  "a,,- I Y L  

4. ibppkatbn t5 the $CUllg.-%antb laser m0dd 

The Scully-Lamb m6lel is valid~for z laser in which the relevant atomic transition 
raies are ai ieasi an order of magnitude greater than the rate of loss of photons from 
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the laser cavity The photon-number probability distribution then satisfies the equation 
of motion (Scully and Lamb 1967, Loudon 1983) 

where 0- is the scaled pumping rate and y is the photon loss rate through one mirror 
of the laser cavity, the other mirror having 100% reflectivity 'Zie laser threshold occurs 
at n = y, and the 'saturation' photon number n,  is the mean of the distribution at U = 2y. 

The rates of change of the conditional probabilities needed for application of (2 7 )  
now follow directly from (4 1) For each value of n in (2.7). the denvatives are nonzero 
only for m = n, n - 1 and n -2, and these are obtained by setting n on the left of (4.1) 
equal to the three values of m in tum and retaining only the contributions on the right 
that survive when Pn-, = 1 and the other elements vanish The solution of (2.7) is found 
after some algebra to be 

It is best to consider separately the three regions of laser operation 

4 1. Below threshold (a c y )  

Standard results given in the above references are 

(n)= m / ( v - a )  

( n ( n - I ) ) = l ( n ) '  

and 

(4 31 

(4 4) 

Po = 1 - (Cl/?). (4 5 )  

The saturation number n, is typically much larger than any n for which the below- 
threshold distribution P, has significant values Thus n - 1 can he neglected in the 
denominator of the summand in (4.2). and 

A,=y-a  (4.6) 

while the population correlation is 

G ~ ' ( T )  = (n)'{1 +exp[-( y - n)l~l] i  (4.7) 

m agreement aiitb known results for a chaotic photon distribution (Hildred and Hall 
1976, Loudon i983) but in disagreement with Jakeman and Pike (1971). The spectrum 
obtalned from (2 12) is 

where ( n )  is given by (4.3) and A, by (4.6), and this applies to observations outside 
the laser cavity of photons transmstted through the partially reflecting mirror. The final 
term m (4 8 )  arises from self-beating of chaotic amplitude fluctuations whose Lorentzian 
spectrum has a full width A, at half maximum height. 
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The inverse coirelation times predicted by (4 6 )  and illustrated in figure i can be 
compared with the results obtained by rmmenca! solution of the Scully-Lamb equations 
of motion (Smith 1975) shown in the inset in the figure The validity of (4 6 )  is restricted 
to operation of the laser outside its threshold reZion, which extends over values of 
a/y within a few times n i l 2  of the value unity. This region is relatively broad for the 
low value n, = 1600 assumed by Smith for the results given in his table I. However, 
with the threshold region excluded, the approximation (4.6) gives inverse correlation 
times that fgree with the exact values to within about 10% or less. 

4.2. At tkieshold (a = y )  

The standard results of the Scully-Lamb mod4 are 

(n j  = (2nS/7r)'" 

( v ( n  - 1)) =$w{I - (2/an,)"'}(n)2 

(4.9) 

(4.10) 

and 

po = (2: 7rn,1"* (4 11) 

The saturation photon ilumber n,  is usually much larger than unity, when 

(4.12) Aq=-  Y 

to a good approximation. The results obtained from this expression are in better than 
10% agreement with correlatim times for several values of n, calculated by numerical 
solution o i  the Scully-Lazb equation of motion (Smith 9 7 5 ,  table 11). n u s  for 
n,= 1600, e-iaharion of (4.12) gives h,/y =0.055 compared to Smith's value of 0.052 

Fxgure 1. Vanitro~i with pumping rale of the m w s e  correlai@on time of a Scvllg-Lamb 
laser The ~(li it inmus C U ~ Y E P  Show the appra.tw"e results (4 6 )  and (4 15). The inset shows 
the ihreskold region on a larger seek wiib the eiact  numerrcal re~i i l f i  of Smith (2975) for 
os= 1600 indicated by + symbols 
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4.3 Above threshold (e> y )  

The standard results are 

(n)=(cr - Y ) d Y  (4.13) 
( n ( n  - ~ ) ) = ( n ) ' +  n, (4.14) 

and Po is negligibly small. The distribution P. is now very sharply peaked around the 
large mean value (n) so that n can he replaced by ( t i )  in the summand in (4.2) to give 

(4.15) 

and this relation is illustrated in figure 1. The population correlation is 

GY( 7) = (n)'+ n, eXp[-( (Y - Y)y/TI/ a] (4.16) 
and the external fluctuation spectrum IS 

The final term in (4.17) can he interpreted as arising from heating of the coherent laser 
emission with residual amplitude fluctuations whose Lorentzian spectrum has a full 
width 2h, Note the additional factor of 2 compared to the width of the helow-threshold 
amplitude fluctuation spectrum (Plsken 1965). 

These expressions disagree with the results of Jakeman and Pike (1971) and Wildred 
and Hall (1975). The spectrum (4 17) agrees in general with that of Haake et a/ (1989), 
bur it only agrees with an expression quoted without derivation by Kennedy and Walls 
(1989) well above threshold, where (1 >> y. Both of these papers derive an inverse 
correlation time that agrees with the expression given in (4.19, and there is again 
good agreement with the exact results of Smith (1973, provided that the threshold 
region is excluded from the comparison. 

Some of these discrepancies can he resolved by repeating the above calculation5 
without photon annihilation. Thus we assume that the rate equation (4.1) characterizes 
a classical population of individuals and use result (3.7) to evaluate its charactenstic 
fluctuation time. This obtains the rather simple result 

h,=y(n)/Varn= y / F =  y / ( Q + l )  (4 18) 
where F is the population Fano factor (Fano 1947) and Q is Mandel's parameter 
(Mandel 1979). Substituting the standard results (4.3) and (4 4) into equation (4.18) 
gives below threshold exactly 

h , = y - a  ( L Y 5 Y ) .  (4.19) 
Similarly, at threshold the standard resu1:s !4.9) and (4.10) lead through (4 18) without 
funher approximation to 

whilst above thresho!d, substirutme equatiens (4.13) and (4.14) into formula (4.18) 
gives exactly 

L = ( a - y ) y l a  (a Y) (4.21) 

Evidently formulae (4.1) and (4.18) differ very little under the conditions when (4.6), 
(4.12) and (4.15) are +slid. This is because below threshold the number fluctuations 
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are characterized by a single exponential so that (2.6) and (3.5) are exact and A , =  A , .  
At and above threshold the population is large so that its evolution is little affected 
by the removal of individuals during the counting process. Result (4.18) predicts a 
simple relationship between the magnitude and the timescale of the population fluctuat- 
ing which should be open to experimental verification. 

Comparison of the above results with those of Jakeman and Pike (1971) shows 
that these authors assumed the corrert interpolation form (2.6) for the quantum 
mechanical correlation function but used the classical definition, G:)(T) given by 
equation (3.1). Thus their formula for A differs from both the quantum mechanical 
result (4.2) and the classical result (4 18). Whilst their result is accurate near and above 
threshold, assuming a large mean photon number, they fail to obtain the correct 
asymptotic limit below threshold where this number becomes small Hildred and Hail 
(1978) use the correct quantum mechanical starting formulae both for the interpolation 
form and the basic definition of G 2 ( ~ ) .  However, they fail to obtain the correct quantum 
mechanical result (4.2) but rather quote that obtained by Jakeman and Pike previously. 

E Jakernan and R Loudon 

5. Coucllssions 

The main aim of this paper is the re-establishment of the method of Jakeman and Pike 
(1971) as a simple but effective procedure for determining good approximations to the 
time dependences of the particle number-number correlation functions of fluctuating 
boson populations We have developed general expressions for the correlation functions 
under the assumptions of a single characteristic correlation time and a counting 
mechanism that either destroys the counted particles (quantum version) or leaves them 
intact (classical version). 

The general expressions have been illustrated by the example of a cavity laser 
treated by the theory of Scslly and Lamb (1967). The quantum and classical versions 
produce different gsneral expressions for the correlaiion function or the photon 
numbers at dieerent times, but identical approximate results are obtained in the IWO 

versions when conditions zppropriate to the three regimes of operation below, at and 
above threshold are inaerted Below tbreshold the laser light has a chaotic character, 
when it is known that the quantum and classical calculations of the photon-number 
fluctuations give identical results since the additional ‘particle’ term in the quantum 
variance is compensated hy the occurrence ~f !n(n -1)) ir?s!ead of the c!assica! (n2) 
in the correlation function calculation. These two averages are again approximately 
the same at and above threshold on account of~the large mean photon numbers thar 
occur. Despite the limitation of the Jakeman and Pike method to a single correlation 
time, the laser results are close to those of a more accurate calculation that takes 
account of mdtiple relaxation time behaviour (Smith 1975). 

More generally, we believe that the method herein corrected and developed in 
consistent quantum mechanical and classical versions offers a very useful technique 
for obtaining particle number correlation functions 
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